2007 IEEE International Conference on Image Processing - San Antonio, Texas, U.S.A. - September 16-19, 2007

Technical Program

Paper Detail

Paper:TA-L4.7
Session:Image and Video Restoration and Enhancement I
Time:Tuesday, September 18, 12:10 - 12:30
Presentation: Lecture
Title: IMAGE DENOISING WITH NONPARAMETRIC HIDDEN MARKOV TREES
Authors: Jyri Kivinen; ICSI, University of California, Berkeley 
 Erik Sudderth; University of California, Berkeley 
 Michael Jordan; University of California, Berkeley 
Abstract: We develop a hierarchical, nonparametric statistical model for wavelet representations of natural images. Extending previous work on Gaussian scale mixtures, wavelet coefficients are marginally distributed according to infinite, Dirichlet process mixtures. A hidden Markov tree is then used to couple the mixture assignments at neighboring nodes. Via a Monte Carlo learning algorithm, the resulting hierarchical Dirichlet process hidden Markov tree (HDP-HMT) model automatically adapts to the complexity of different images and wavelet bases. Image denoising results demonstrate the effectiveness of this learning process.



©2016 Conference Management Services, Inc. -||- email: webmaster@icip2007.com -||- Last updated Friday, August 17, 2012